An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

An Amorphous Phase Precedes Crystallization : Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. / Pokratath, Rohan; Lermusiaux, Laurent; Checchia, Stefano; Mathew, Jikson Pulparayil; Cooper, Susan Rudd; Mathiesen, Jette Katja; Landaburu, Guillaume; Banerjee, Soham; Tao, Songsheng; Reichholf, Nico; Billinge, Simon J.L.; Abécassis, Benjamin; Jensen, Kirsten M.Ø.; De Roo, Jonathan.

I: ACS Nano, 2023, s. 8796−8806.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Pokratath, R, Lermusiaux, L, Checchia, S, Mathew, JP, Cooper, SR, Mathiesen, JK, Landaburu, G, Banerjee, S, Tao, S, Reichholf, N, Billinge, SJL, Abécassis, B, Jensen, KMØ & De Roo, J 2023, 'An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals', ACS Nano, s. 8796−8806. https://doi.org/10.1021/acsnano.3c02149

APA

Pokratath, R., Lermusiaux, L., Checchia, S., Mathew, J. P., Cooper, S. R., Mathiesen, J. K., Landaburu, G., Banerjee, S., Tao, S., Reichholf, N., Billinge, S. J. L., Abécassis, B., Jensen, K. M. Ø., & De Roo, J. (2023). An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. ACS Nano, 8796−8806. https://doi.org/10.1021/acsnano.3c02149

Vancouver

Pokratath R, Lermusiaux L, Checchia S, Mathew JP, Cooper SR, Mathiesen JK o.a. An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. ACS Nano. 2023;8796−8806. https://doi.org/10.1021/acsnano.3c02149

Author

Pokratath, Rohan ; Lermusiaux, Laurent ; Checchia, Stefano ; Mathew, Jikson Pulparayil ; Cooper, Susan Rudd ; Mathiesen, Jette Katja ; Landaburu, Guillaume ; Banerjee, Soham ; Tao, Songsheng ; Reichholf, Nico ; Billinge, Simon J.L. ; Abécassis, Benjamin ; Jensen, Kirsten M.Ø. ; De Roo, Jonathan. / An Amorphous Phase Precedes Crystallization : Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals. I: ACS Nano. 2023 ; s. 8796−8806.

Bibtex

@article{b878e7c588044a8fbb5ffa69e1321519,
title = "An Amorphous Phase Precedes Crystallization: Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals",
abstract = "One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.",
keywords = "growth, nanoparticle, nucleation, small-angle X-ray scattering, total scattering, ZrO",
author = "Rohan Pokratath and Laurent Lermusiaux and Stefano Checchia and Mathew, {Jikson Pulparayil} and Cooper, {Susan Rudd} and Mathiesen, {Jette Katja} and Guillaume Landaburu and Soham Banerjee and Songsheng Tao and Nico Reichholf and Billinge, {Simon J.L.} and Benjamin Ab{\'e}cassis and Jensen, {Kirsten M.{\O}.} and {De Roo}, Jonathan",
note = "Publisher Copyright: {\textcopyright} 2023 The Authors. Published by American Chemical Society.",
year = "2023",
doi = "10.1021/acsnano.3c02149",
language = "English",
pages = "8796−8806",
journal = "A C S Nano",
issn = "1936-0851",
publisher = "American Chemical Society",

}

RIS

TY - JOUR

T1 - An Amorphous Phase Precedes Crystallization

T2 - Unraveling the Colloidal Synthesis of Zirconium Oxide Nanocrystals

AU - Pokratath, Rohan

AU - Lermusiaux, Laurent

AU - Checchia, Stefano

AU - Mathew, Jikson Pulparayil

AU - Cooper, Susan Rudd

AU - Mathiesen, Jette Katja

AU - Landaburu, Guillaume

AU - Banerjee, Soham

AU - Tao, Songsheng

AU - Reichholf, Nico

AU - Billinge, Simon J.L.

AU - Abécassis, Benjamin

AU - Jensen, Kirsten M.Ø.

AU - De Roo, Jonathan

N1 - Publisher Copyright: © 2023 The Authors. Published by American Chemical Society.

PY - 2023

Y1 - 2023

N2 - One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.

AB - One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.

KW - growth

KW - nanoparticle

KW - nucleation

KW - small-angle X-ray scattering

KW - total scattering

KW - ZrO

U2 - 10.1021/acsnano.3c02149

DO - 10.1021/acsnano.3c02149

M3 - Journal article

C2 - 37093055

AN - SCOPUS:85156192036

SP - 8796−8806

JO - A C S Nano

JF - A C S Nano

SN - 1936-0851

ER -

ID: 347294023