Long aliphatic chain derivatives of trigonal lanthanide complexes

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

The trigonal lanthanide complexes LnL (H3L = tris(((3-formyl-5-methylsalicylidene)amino)ethyl)amine) contain three pendant aldehyde groups and are known to react with primary amines. Reacting LnL (Ln = Yb, Lu) with 1-octadecylamine yields the novel aliphatic lanthanide complexes LnL(18) (H3L18 = tris(((3-(1-octadecylimine)-5-methylsalicylidene)amino)ethyl)amine) where the three aldehyde groups are transformed to 1-octadecylimine groups. Herein the syntheses, structural characterisation and magnetic properties of LnL(18) are presented. The crystal structure of YbL18 shows that the reaction of YbL with 1-octadecylamine leads to only very subtle perturbations in the first coordination sphere of Yb(iii), with the Yb(iii) ion retaining its heptacoordination and similar bond lengths and angles to the ligand. The three octadecyl chains in each complex were found to direct crystal packing into lipophilic arrays of van der Waals interaction-driven hydrocarbon stacking. The static magnetic properties of YbL18 were compared to those of the non-derivatised complex YbL. The energy level splitting of the F-2(7/2) ground multiplet was found, by emission spectroscopy, to be very similar between the derivatised and non-derivatised complexes. A.c. magnetic susceptibility measurements on YbL18 and YbL diluted at 4.8% and 4.2% into the diamagnetic hosts LuL18 and LuL, respectively, revealed that the spin-lattice relaxation of both complexes is governed by a low temperature direct process and a high temperature Raman process. In the high temperature regime, the derivatised complex was also found to have faster spin-lattice relaxation, which is likely due to the increased number of phonons in the octadecyl chains.
OriginalsprogEngelsk
TidsskriftDalton Transactions
Vol/bind52
Udgave nummer25
Sider (fra-til)8792-8799
Antal sider8
ISSN1477-9234
DOI
StatusUdgivet - 2023

ID: 357726442