Mechanistic Insight into the Precursor Chemistry of ZrO2and HfO2Nanocrystals; Towards Size-Tunable Syntheses

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 3,84 MB, PDF-dokument

  • Rohan Pokratath
  • Dietger Van Den Eynden
  • Susan Rudd Cooper
  • Jette Katja Mathiesen
  • Valérie Waser
  • Mike Devereux
  • Simon J.L. Billinge
  • Markus Meuwly
  • Jensen, Kirsten Marie Ørnsbjerg
  • Jonathan De Roo

One can nowadays readily generate monodisperse colloidal nanocrystals, but a retrosynthetic analysis is still not possible since the underlying chemistry is often poorly understood. Here, we provide insight into the reaction mechanism of colloidal zirconia and hafnia nanocrystals synthesized from metal chloride and metal isopropoxide. We identify the active precursor species in the reaction mixture through a combination of nuclear magnetic resonance spectroscopy (NMR), density functional theory (DFT) calculations, and pair distribution function (PDF) analysis. We gain insight into the interaction of the surfactant, tri-n-octylphosphine oxide (TOPO), and the different precursors. Interestingly, we identify a peculiar X-type ligand redistribution mechanism that can be steered by the relative amount of Lewis base (L-type). We further monitor how the reaction mixture decomposes using solution NMR and gas chromatography, and we find that ZrCl4is formed as a by-product of the reaction, limiting the reaction yield. The reaction proceeds via two competing mechanisms: E1 elimination (dominating) and SN1 substitution (minor). Using this new mechanistic insight, we adapted the synthesis to optimize the yield and gain control over nanocrystal size. These insights will allow the rational design and synthesis of complex oxide nanocrystals.

OriginalsprogEngelsk
TidsskriftJournal of the American Chemical Society
Vol/bind2
Udgave nummer4
Sider (fra-til)827-838
Antal sider12
ISSN0002-7863
DOI
StatusUdgivet - 25 apr. 2022

Bibliografisk note

Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 307756223