Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: a playground for magnetic refrigeration

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Standard

Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 : a playground for magnetic refrigeration. / Hooper, Thomas N.; Inglis, Ross; Lorusso, Giulia; Ujma, Jakub; Barran, Perdita E.; Uhrin, Dusan; Schnack, Jürgen; Piligkos, Stergios; Evangelisti, Marco; Brechin, Euan K.

I: Inorganic Chemistry, Bind 55, Nr. 20, 2016, s. 10535-10546.

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Harvard

Hooper, TN, Inglis, R, Lorusso, G, Ujma, J, Barran, PE, Uhrin, D, Schnack, J, Piligkos, S, Evangelisti, M & Brechin, EK 2016, 'Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: a playground for magnetic refrigeration', Inorganic Chemistry, bind 55, nr. 20, s. 10535-10546. https://doi.org/10.1021/acs.inorgchem.6b01730

APA

Hooper, T. N., Inglis, R., Lorusso, G., Ujma, J., Barran, P. E., Uhrin, D., Schnack, J., Piligkos, S., Evangelisti, M., & Brechin, E. K. (2016). Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: a playground for magnetic refrigeration. Inorganic Chemistry, 55(20), 10535-10546. https://doi.org/10.1021/acs.inorgchem.6b01730

Vancouver

Hooper TN, Inglis R, Lorusso G, Ujma J, Barran PE, Uhrin D o.a. Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: a playground for magnetic refrigeration. Inorganic Chemistry. 2016;55(20):10535-10546. https://doi.org/10.1021/acs.inorgchem.6b01730

Author

Hooper, Thomas N. ; Inglis, Ross ; Lorusso, Giulia ; Ujma, Jakub ; Barran, Perdita E. ; Uhrin, Dusan ; Schnack, Jürgen ; Piligkos, Stergios ; Evangelisti, Marco ; Brechin, Euan K. / Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 : a playground for magnetic refrigeration. I: Inorganic Chemistry. 2016 ; Bind 55, Nr. 20. s. 10535-10546.

Bibtex

@article{11012b36e6e14b8cba39745ecf76a409,
title = "Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4: a playground for magnetic refrigeration",
abstract = "The family of compounds of general formula [LnIII 4TMII 8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 {[Gd4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1a); [Y4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1b); [Gd4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2a); [Y4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2b); [Gd4Cu8(OH)8(hep)8(O2CiPr)8](ClO4)4 (3a); [Gd4Cu8(OH)8(Hpdm)8(O2CtBu)8](ClO4)4 (4a); [Gd4Cu8(OH)8(ea)8(O2CMe)8](ClO4)4 (5a); [Gd4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6a); [Y4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6b); [Gd4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7a); [Y4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7b)} can be formed very simply and in high yields from the reaction of Ln(NO3)3·6H2O and TM(ClO4)2·6H2O and the appropriate ligand blend in a mixture of CH2Cl2 and MeOH in the presence of a suitable base. Remarkably, almost all the constituent parts, namely the lanthanide (or rare earth) ions LnIII (here Ln = Gd or Y), the transition metal ions TMII (here TM = Zn, Cu, Ni, Co), the bridging ligand L (Hhmp = 2-(hydroxymethyl)pyridine; Hhep = 2-(hydroxyethyl)pyridine; H2pdm = pyridine-2,6-dimethanol; Hea = 2-ethanolamine), and the carboxylates can be exchanged while maintaining the structural integrity of the molecule. NMR spectroscopy of diamagnetic complex 1b reveals the complex to be fully intact in solution with all signals from the hydroxide, ligand L, and the carboxylates equivalent on the NMR time scale, suggesting the complex possesses greater symmetry in solution than in the solid state. High resolution nano-ESI mass spectrometry on dichloromethane solutions of 2a and 2b shows both complexes are present in two charge states with little fragmentation; with the most intense peak in each spectrum corresponding to [Ln4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)2 2+. This family of compounds offers an excellent playground for probing how the magnetocaloric effect evolves by introducing either antiferromagnetic or ferromagnetic interactions, or magnetic anisotropy, by substituting the nonmagnetic ZnII (1a) with CuII (2a), NiII (6a) or CoII (7a), respectively. The largest magnetocaloric effect is found for the ferromagnetically coupled complex 6a, while the predominant antiferromagnetic interactions in 2a yield an inverse magnetocaloric effect; that is, the temperature increases on lowering the applied field, under the proper experimental conditions. In spite of increasing the magnetic density by adding ions that bring in antiferromagnetic interactions (2a) or magnetic anisotropy (7a), the magnetocaloric effect is overall smaller in 2a and 7a than in 1a, where only four GdIII spins per molecule contribute to the magnetocaloric properties.",
author = "Hooper, {Thomas N.} and Ross Inglis and Giulia Lorusso and Jakub Ujma and Barran, {Perdita E.} and Dusan Uhrin and J{\"u}rgen Schnack and Stergios Piligkos and Marco Evangelisti and Brechin, {Euan K.}",
year = "2016",
doi = "10.1021/acs.inorgchem.6b01730",
language = "English",
volume = "55",
pages = "10535--10546",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "20",

}

RIS

TY - JOUR

T1 - Structurally flexible and solution stable [Ln4TM8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4

T2 - a playground for magnetic refrigeration

AU - Hooper, Thomas N.

AU - Inglis, Ross

AU - Lorusso, Giulia

AU - Ujma, Jakub

AU - Barran, Perdita E.

AU - Uhrin, Dusan

AU - Schnack, Jürgen

AU - Piligkos, Stergios

AU - Evangelisti, Marco

AU - Brechin, Euan K.

PY - 2016

Y1 - 2016

N2 - The family of compounds of general formula [LnIII 4TMII 8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 {[Gd4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1a); [Y4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1b); [Gd4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2a); [Y4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2b); [Gd4Cu8(OH)8(hep)8(O2CiPr)8](ClO4)4 (3a); [Gd4Cu8(OH)8(Hpdm)8(O2CtBu)8](ClO4)4 (4a); [Gd4Cu8(OH)8(ea)8(O2CMe)8](ClO4)4 (5a); [Gd4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6a); [Y4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6b); [Gd4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7a); [Y4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7b)} can be formed very simply and in high yields from the reaction of Ln(NO3)3·6H2O and TM(ClO4)2·6H2O and the appropriate ligand blend in a mixture of CH2Cl2 and MeOH in the presence of a suitable base. Remarkably, almost all the constituent parts, namely the lanthanide (or rare earth) ions LnIII (here Ln = Gd or Y), the transition metal ions TMII (here TM = Zn, Cu, Ni, Co), the bridging ligand L (Hhmp = 2-(hydroxymethyl)pyridine; Hhep = 2-(hydroxyethyl)pyridine; H2pdm = pyridine-2,6-dimethanol; Hea = 2-ethanolamine), and the carboxylates can be exchanged while maintaining the structural integrity of the molecule. NMR spectroscopy of diamagnetic complex 1b reveals the complex to be fully intact in solution with all signals from the hydroxide, ligand L, and the carboxylates equivalent on the NMR time scale, suggesting the complex possesses greater symmetry in solution than in the solid state. High resolution nano-ESI mass spectrometry on dichloromethane solutions of 2a and 2b shows both complexes are present in two charge states with little fragmentation; with the most intense peak in each spectrum corresponding to [Ln4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)2 2+. This family of compounds offers an excellent playground for probing how the magnetocaloric effect evolves by introducing either antiferromagnetic or ferromagnetic interactions, or magnetic anisotropy, by substituting the nonmagnetic ZnII (1a) with CuII (2a), NiII (6a) or CoII (7a), respectively. The largest magnetocaloric effect is found for the ferromagnetically coupled complex 6a, while the predominant antiferromagnetic interactions in 2a yield an inverse magnetocaloric effect; that is, the temperature increases on lowering the applied field, under the proper experimental conditions. In spite of increasing the magnetic density by adding ions that bring in antiferromagnetic interactions (2a) or magnetic anisotropy (7a), the magnetocaloric effect is overall smaller in 2a and 7a than in 1a, where only four GdIII spins per molecule contribute to the magnetocaloric properties.

AB - The family of compounds of general formula [LnIII 4TMII 8(OH)8(L)8(O2CR)8(MeOH)y](ClO4)4 {[Gd4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1a); [Y4Zn8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (1b); [Gd4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2a); [Y4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)4 (2b); [Gd4Cu8(OH)8(hep)8(O2CiPr)8](ClO4)4 (3a); [Gd4Cu8(OH)8(Hpdm)8(O2CtBu)8](ClO4)4 (4a); [Gd4Cu8(OH)8(ea)8(O2CMe)8](ClO4)4 (5a); [Gd4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6a); [Y4Ni8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (6b); [Gd4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7a); [Y4Co8(OH)8(hmp)8(O2CEt)8(MeOH)6](ClO4)4 (7b)} can be formed very simply and in high yields from the reaction of Ln(NO3)3·6H2O and TM(ClO4)2·6H2O and the appropriate ligand blend in a mixture of CH2Cl2 and MeOH in the presence of a suitable base. Remarkably, almost all the constituent parts, namely the lanthanide (or rare earth) ions LnIII (here Ln = Gd or Y), the transition metal ions TMII (here TM = Zn, Cu, Ni, Co), the bridging ligand L (Hhmp = 2-(hydroxymethyl)pyridine; Hhep = 2-(hydroxyethyl)pyridine; H2pdm = pyridine-2,6-dimethanol; Hea = 2-ethanolamine), and the carboxylates can be exchanged while maintaining the structural integrity of the molecule. NMR spectroscopy of diamagnetic complex 1b reveals the complex to be fully intact in solution with all signals from the hydroxide, ligand L, and the carboxylates equivalent on the NMR time scale, suggesting the complex possesses greater symmetry in solution than in the solid state. High resolution nano-ESI mass spectrometry on dichloromethane solutions of 2a and 2b shows both complexes are present in two charge states with little fragmentation; with the most intense peak in each spectrum corresponding to [Ln4Cu8(OH)8(hmp)8(O2CiPr)8](ClO4)2 2+. This family of compounds offers an excellent playground for probing how the magnetocaloric effect evolves by introducing either antiferromagnetic or ferromagnetic interactions, or magnetic anisotropy, by substituting the nonmagnetic ZnII (1a) with CuII (2a), NiII (6a) or CoII (7a), respectively. The largest magnetocaloric effect is found for the ferromagnetically coupled complex 6a, while the predominant antiferromagnetic interactions in 2a yield an inverse magnetocaloric effect; that is, the temperature increases on lowering the applied field, under the proper experimental conditions. In spite of increasing the magnetic density by adding ions that bring in antiferromagnetic interactions (2a) or magnetic anisotropy (7a), the magnetocaloric effect is overall smaller in 2a and 7a than in 1a, where only four GdIII spins per molecule contribute to the magnetocaloric properties.

U2 - 10.1021/acs.inorgchem.6b01730

DO - 10.1021/acs.inorgchem.6b01730

M3 - Journal article

C2 - 27685336

AN - SCOPUS:84992146080

VL - 55

SP - 10535

EP - 10546

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 20

ER -

ID: 170765194