Unravelling Composition–Activity–Stability Trends in High Entropy Alloy Electrocatalysts by Using a Data‐Guided Combinatorial Synthesis Strategy and Computational Modeling

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,42 MB, PDF-dokument

High entropy alloys (HEA) comprise a huge search space for new electrocatalysts. Next to element combinations, the optimization of the chemical composition is essential for tuning HEA to specific catalytic processes. Simulations of electrocatalytic activity can guide experimental efforts. Yet, the currently available underlying model assumptions do not necessarily align with experimental evidence. To study deviations of theoretical models and experimental data requires statistically relevant datasets. Here, a combinatorial strategy for acquiring large experimental datasets of multi-dimensional composition spaces is presented. Ru–Rh–Pd–Ir–Pt is studied as an exemplary, highly relevant HEA system. Systematic comparison with computed electrochemical activity enables the study of deviations from theoretical model assumptions for compositionally complex solid solutions in the experiment. The results suggest that the experimentally obtained distribution of surface atoms deviates from the ideal distribution of atoms in the model. Leveraging both advanced simulation and large experimental data enables the estimation of electrocatalytic activity and solid-solution stability trends in the 5D composition space of the HEA system. A perspective on future directions for the development of active and stable HEA catalysts is outlined.
OriginalsprogEngelsk
Artikelnummer2103312
TidsskriftAdvanced Energy Materials
Vol/bind12
Udgave nummer8
Antal sider9
ISSN1614-6832
DOI
StatusUdgivet - 2022

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 289231518