A high efficiency gas phase photoreactor for eradication of methane from low-concentration sources

Publikation: Bidrag til tidsskriftLetterForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 1,18 MB, PDF-dokument

Despite the urgent need, very few methods are able to efficiently remove methane from waste air with low cost and energy per unit volume, especially at the low concentrations found in emissions from e.g. wastewater treatment, livestock production, biogas production and mine ventilation. We present the first results of a novel method based on using chlorine atoms in the gas phase, thereby achieving high efficiency. A laboratory prototype of the methane eradication photochemical system (MEPS) technology achieves 58% removal efficiency with a flow capacity of 30 l min−1; a reactor volume of 90 l; UV power input at 368 nm of 110 W; chlorine concentration of 99 ppm; and a methane concentration of 55 ppm; under these conditions the apparent quantum yield (AQY) ranged from 0.48% to 0.56% and the volumetric energy consumption ranged from 36 to 244 kJ m−3. The maximum achieved AQY with this system was 0.83%. A series of steps that can be taken to further improve performance are described. These metrics show that MEPS has the potential to be a viable method for eliminating low-concentration methane from waste air.

OriginalsprogEngelsk
Artikelnummer014017
TidsskriftEnvironmental Research Letters
Vol/bind19
Udgave nummer1
Antal sider7
ISSN1748-9326
DOI
StatusUdgivet - 2024

Bibliografisk note

Publisher Copyright:
© 2023 The Author(s). Published by IOP Publishing Ltd.

ID: 377814224